MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. C61000 Bronze

EN 1.4903 stainless steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
42
Shear Strength, MPa 420
280 to 300
Tensile Strength: Ultimate (UTS), MPa 670 to 680
390 to 460
Tensile Strength: Yield (Proof), MPa 500
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 650
210
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 26
69
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
15
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
16

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 36
49
Embodied Water, L/kg 88
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 650
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
13 to 15
Strength to Weight: Bending, points 22
14 to 16
Thermal Diffusivity, mm2/s 7.0
19
Thermal Shock Resistance, points 23
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.040
6.0 to 8.5
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0 to 0.3
90.2 to 94
Iron (Fe), % 87.1 to 90.5
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5