MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. 3004 Aluminum

EN 1.4905 stainless steel belongs to the iron alloys classification, while 3004 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is 3004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19
1.1 to 19
Fatigue Strength, MPa 330
55 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 460
100 to 180
Tensile Strength: Ultimate (UTS), MPa 740
170 to 310
Tensile Strength: Yield (Proof), MPa 510
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 660
180
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1440
630
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
42
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 90
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
3.2 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 680
33 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26
18 to 31
Strength to Weight: Bending, points 23
25 to 37
Thermal Diffusivity, mm2/s 7.0
65
Thermal Shock Resistance, points 25
7.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.040
95.6 to 98.2
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 86.2 to 88.8
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0.3 to 0.6
1.0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0.1 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.050 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15