MakeItFrom.com
Menu (ESC)

EN 1.4905 Stainless Steel vs. 5652 Aluminum

EN 1.4905 stainless steel belongs to the iron alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4905 stainless steel and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
6.8 to 25
Fatigue Strength, MPa 330
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 460
110 to 170
Tensile Strength: Ultimate (UTS), MPa 740
190 to 290
Tensile Strength: Yield (Proof), MPa 510
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 660
190
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1440
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
35
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 90
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 680
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 26
20 to 30
Strength to Weight: Bending, points 23
27 to 36
Thermal Diffusivity, mm2/s 7.0
57
Thermal Shock Resistance, points 25
8.4 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.040
95.8 to 97.7
Boron (B), % 0.00050 to 0.0050
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0.15 to 0.35
Copper (Cu), % 0
0 to 0.040
Iron (Fe), % 86.2 to 88.8
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0.3 to 0.6
0 to 0.010
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0.1 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.050 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15