MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. EN 1.4552 Stainless Steel

Both EN 1.4913 stainless steel and EN 1.4552 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is EN 1.4552 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14 to 22
29
Fatigue Strength, MPa 320 to 480
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Tensile Strength: Ultimate (UTS), MPa 870 to 980
510
Tensile Strength: Yield (Proof), MPa 480 to 850
200

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 430
490
Maximum Temperature: Mechanical, °C 700
960
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.6
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 97
150

Common Calculations

PREN (Pitting Resistance) 14
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 35
18
Strength to Weight: Bending, points 26 to 28
18
Thermal Diffusivity, mm2/s 6.5
4.1
Thermal Shock Resistance, points 31 to 34
11

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0 to 0.070
Chromium (Cr), % 10 to 11.5
18 to 20
Iron (Fe), % 84.5 to 88.3
63.9 to 73
Manganese (Mn), % 0.4 to 0.9
0 to 1.5
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
9.0 to 12
Niobium (Nb), % 0.25 to 0.55
0 to 1.0
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.1 to 0.3
0