MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. C96400 Copper-nickel

EN 1.4913 stainless steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 14 to 22
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
51
Tensile Strength: Ultimate (UTS), MPa 870 to 980
490
Tensile Strength: Yield (Proof), MPa 480 to 850
260

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 700
260
Melting Completion (Liquidus), °C 1460
1240
Melting Onset (Solidus), °C 1410
1170
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 24
28
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
5.9
Embodied Energy, MJ/kg 41
87
Embodied Water, L/kg 97
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 35
15
Strength to Weight: Bending, points 26 to 28
16
Thermal Diffusivity, mm2/s 6.5
7.8
Thermal Shock Resistance, points 31 to 34
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0 to 0.15
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0
62.3 to 71.3
Iron (Fe), % 84.5 to 88.3
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.4 to 0.9
0 to 1.5
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0.2 to 0.6
28 to 32
Niobium (Nb), % 0.25 to 0.55
0.5 to 1.5
Nitrogen (N), % 0.050 to 0.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Vanadium (V), % 0.1 to 0.3
0
Residuals, % 0
0 to 0.5