MakeItFrom.com
Menu (ESC)

EN 1.4922 Stainless Steel vs. ASTM A182 Grade F92

Both EN 1.4922 stainless steel and ASTM A182 grade F92 are iron alloys. Both are furnished in the normalized and tempered condition. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4922 stainless steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
22
Fatigue Strength, MPa 330
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 470
440
Tensile Strength: Ultimate (UTS), MPa 770
690
Tensile Strength: Yield (Proof), MPa 550
500

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 720
590
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
26
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
40
Embodied Water, L/kg 100
89

Common Calculations

PREN (Pitting Resistance) 15
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 770
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 6.5
6.9
Thermal Shock Resistance, points 27
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.17 to 0.23
0.070 to 0.13
Chromium (Cr), % 10 to 12.5
8.5 to 9.5
Iron (Fe), % 83.5 to 88.2
85.8 to 89.1
Manganese (Mn), % 0.3 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0.8 to 1.2
0.3 to 0.6
Nickel (Ni), % 0.3 to 0.8
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0.2 to 0.35
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010