MakeItFrom.com
Menu (ESC)

EN 1.4922 Stainless Steel vs. S20433 Stainless Steel

Both EN 1.4922 stainless steel and S20433 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4922 stainless steel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
46
Fatigue Strength, MPa 330
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 470
440
Tensile Strength: Ultimate (UTS), MPa 770
630
Tensile Strength: Yield (Proof), MPa 550
270

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
410
Maximum Temperature: Mechanical, °C 720
900
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 100
150

Common Calculations

PREN (Pitting Resistance) 15
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 770
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 6.5
4.0
Thermal Shock Resistance, points 27
14

Alloy Composition

Carbon (C), % 0.17 to 0.23
0 to 0.080
Chromium (Cr), % 10 to 12.5
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 83.5 to 88.2
64.1 to 72.4
Manganese (Mn), % 0.3 to 1.0
5.5 to 7.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.2 to 0.35
0