MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. 1435 Aluminum

EN 1.4923 stainless steel belongs to the iron alloys classification, while 1435 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is 1435 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 12 to 21
4.1 to 32
Fatigue Strength, MPa 300 to 440
27 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 540 to 590
54 to 87
Tensile Strength: Ultimate (UTS), MPa 870 to 980
81 to 150
Tensile Strength: Yield (Proof), MPa 470 to 780
23 to 130

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 24
230
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
60
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
200

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.0
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 100
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
5.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
3.8 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 31 to 35
8.3 to 15
Strength to Weight: Bending, points 26 to 28
15 to 23
Thermal Diffusivity, mm2/s 6.5
93
Thermal Shock Resistance, points 30 to 34
3.6 to 6.7

Alloy Composition

Aluminum (Al), % 0
99.35 to 99.7
Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0 to 0.020
Iron (Fe), % 83.5 to 87.1
0.3 to 0.5
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.9
0 to 0.050
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0 to 0.1

Comparable Variants