MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. 360.0 Aluminum

EN 1.4923 stainless steel belongs to the iron alloys classification, while 360.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 12 to 21
2.5
Fatigue Strength, MPa 300 to 440
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 540 to 590
190
Tensile Strength: Ultimate (UTS), MPa 870 to 980
300
Tensile Strength: Yield (Proof), MPa 470 to 780
170

Thermal Properties

Latent Heat of Fusion, J/g 270
530
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1450
590
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.9
7.8
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 100
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 31 to 35
32
Strength to Weight: Bending, points 26 to 28
38
Thermal Diffusivity, mm2/s 6.5
55
Thermal Shock Resistance, points 30 to 34
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
85.1 to 90.6
Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 83.5 to 87.1
0 to 2.0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.4 to 0.9
0 to 0.35
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25