MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. 7129 Aluminum

EN 1.4923 stainless steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 12 to 21
9.0 to 9.1
Fatigue Strength, MPa 300 to 440
150 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 540 to 590
250 to 260
Tensile Strength: Ultimate (UTS), MPa 870 to 980
430
Tensile Strength: Yield (Proof), MPa 470 to 780
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 740
180
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 24
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 100
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 31 to 35
41
Strength to Weight: Bending, points 26 to 28
43 to 44
Thermal Diffusivity, mm2/s 6.5
58
Thermal Shock Resistance, points 30 to 34
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91 to 94
Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 83.5 to 87.1
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0.4 to 0.9
0 to 0.1
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0.25 to 0.35
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15

Comparable Variants