MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. EN 1.7703 Steel

Both EN 1.4923 stainless steel and EN 1.7703 steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 21
20
Fatigue Strength, MPa 300 to 440
320 to 340
Impact Strength: V-Notched Charpy, J 22 to 30
46
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 540 to 590
420 to 430
Tensile Strength: Ultimate (UTS), MPa 870 to 980
670 to 690
Tensile Strength: Yield (Proof), MPa 470 to 780
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
460
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.5
Embodied Energy, MJ/kg 41
35
Embodied Water, L/kg 100
61

Common Calculations

PREN (Pitting Resistance) 15
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 35
24
Strength to Weight: Bending, points 26 to 28
22
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 30 to 34
19 to 20

Alloy Composition

Carbon (C), % 0.18 to 0.24
0.11 to 0.15
Chromium (Cr), % 11 to 12.5
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 83.5 to 87.1
94.6 to 96.4
Manganese (Mn), % 0.4 to 0.9
0.3 to 0.6
Molybdenum (Mo), % 0.8 to 1.2
0.9 to 1.1
Nickel (Ni), % 0.3 to 0.8
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0.25 to 0.35
0.25 to 0.35