MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. C41300 Brass

EN 1.4923 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 21
2.0 to 44
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 540 to 590
230 to 370
Tensile Strength: Ultimate (UTS), MPa 870 to 980
300 to 630
Tensile Strength: Yield (Proof), MPa 470 to 780
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 740
180
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
44
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31 to 35
9.6 to 20
Strength to Weight: Bending, points 26 to 28
11 to 19
Thermal Diffusivity, mm2/s 6.5
40
Thermal Shock Resistance, points 30 to 34
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 83.5 to 87.1
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5

Comparable Variants