MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. C70700 Copper-nickel

EN 1.4923 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 21
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
46
Shear Strength, MPa 540 to 590
220
Tensile Strength: Ultimate (UTS), MPa 870 to 980
320
Tensile Strength: Yield (Proof), MPa 470 to 780
110

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 740
220
Melting Completion (Liquidus), °C 1450
1120
Melting Onset (Solidus), °C 1410
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 24
59
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 35
10
Strength to Weight: Bending, points 26 to 28
12
Thermal Diffusivity, mm2/s 6.5
17
Thermal Shock Resistance, points 30 to 34
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 83.5 to 87.1
0 to 0.050
Manganese (Mn), % 0.4 to 0.9
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
9.5 to 10.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.5