MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. Grade 20 Titanium

EN 1.4945 stainless steel belongs to the iron alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 19 to 34
5.7 to 17
Fatigue Strength, MPa 230 to 350
550 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
47
Shear Strength, MPa 430 to 460
560 to 740
Tensile Strength: Ultimate (UTS), MPa 640 to 740
900 to 1270
Tensile Strength: Yield (Proof), MPa 290 to 550
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 920
370
Melting Completion (Liquidus), °C 1490
1660
Melting Onset (Solidus), °C 1440
1600
Specific Heat Capacity, J/kg-K 470
520
Thermal Expansion, µm/m-K 17
9.6

Otherwise Unclassified Properties

Density, g/cm3 8.1
5.0
Embodied Carbon, kg CO2/kg material 5.0
52
Embodied Energy, MJ/kg 73
860
Embodied Water, L/kg 150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
33
Strength to Weight: Axial, points 22 to 25
50 to 70
Strength to Weight: Bending, points 20 to 22
41 to 52
Thermal Shock Resistance, points 14 to 16
55 to 77

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.040 to 0.1
0 to 0.050
Chromium (Cr), % 15.5 to 17.5
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 57.9 to 65.7
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
71 to 77
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants