MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. Grade Ti-Pd8A Titanium

EN 1.4962 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 34
13
Fatigue Strength, MPa 210 to 330
260
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 630 to 690
500
Tensile Strength: Yield (Proof), MPa 260 to 490
430

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 910
320
Melting Completion (Liquidus), °C 1480
1660
Melting Onset (Solidus), °C 1440
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 4.1
49
Embodied Energy, MJ/kg 59
840
Embodied Water, L/kg 150
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
65
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 21 to 24
31
Strength to Weight: Bending, points 20 to 21
31
Thermal Diffusivity, mm2/s 3.7
8.6
Thermal Shock Resistance, points 14 to 16
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0 to 0.1
Chromium (Cr), % 15.5 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.1 to 69
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 12.5 to 14.5
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.7
98.8 to 99.9
Tungsten (W), % 2.5 to 3.0
0
Residuals, % 0
0 to 0.4