MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. 6025 Aluminum

EN 1.4982 stainless steel belongs to the iron alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
2.8 to 10
Fatigue Strength, MPa 420
67 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 490
110 to 140
Tensile Strength: Ultimate (UTS), MPa 750
190 to 240
Tensile Strength: Yield (Proof), MPa 570
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 860
160
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 4.9
8.5
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 830
33 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 27
19 to 24
Strength to Weight: Bending, points 23
26 to 31
Thermal Diffusivity, mm2/s 3.4
54
Thermal Shock Resistance, points 17
8.2 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.7 to 96.3
Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 14 to 16
0 to 0.2
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 61.8 to 69.7
0 to 0.7
Magnesium (Mg), % 0
2.1 to 3.0
Manganese (Mn), % 5.5 to 7.0
0.6 to 1.4
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.8 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.15 to 0.4
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.15