MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. EN 1.4422 Stainless Steel

Both EN 1.4982 stainless steel and EN 1.4422 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is EN 1.4422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
17
Fatigue Strength, MPa 420
380
Impact Strength: V-Notched Charpy, J 57
110
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 490
520
Tensile Strength: Ultimate (UTS), MPa 750
850
Tensile Strength: Yield (Proof), MPa 570
630

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 540
390
Maximum Temperature: Mechanical, °C 860
760
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
16
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.9
2.7
Embodied Energy, MJ/kg 71
37
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 19
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
130
Resilience: Unit (Modulus of Resilience), kJ/m3 830
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
30
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 3.4
4.3
Thermal Shock Resistance, points 17
31

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.020
Chromium (Cr), % 14 to 16
11 to 13
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 61.8 to 69.7
76.8 to 83.5
Manganese (Mn), % 5.5 to 7.0
0 to 2.0
Molybdenum (Mo), % 0.8 to 1.2
1.3 to 1.8
Nickel (Ni), % 9.0 to 11
4.0 to 5.0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0030
Vanadium (V), % 0.15 to 0.4
0