MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. C14700 Copper

EN 1.4982 stainless steel belongs to the iron alloys classification, while C14700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
9.1 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 490
160 to 190
Tensile Strength: Ultimate (UTS), MPa 750
240 to 320
Tensile Strength: Yield (Proof), MPa 570
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 860
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
370
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
95
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
96

Otherwise Unclassified Properties

Base Metal Price, % relative 22
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.9
2.6
Embodied Energy, MJ/kg 71
41
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 830
31 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27
7.3 to 10
Strength to Weight: Bending, points 23
9.5 to 12
Thermal Diffusivity, mm2/s 3.4
110
Thermal Shock Resistance, points 17
8.4 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
99.395 to 99.798
Iron (Fe), % 61.8 to 69.7
0
Manganese (Mn), % 5.5 to 7.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0.0020 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0.2 to 0.5
Vanadium (V), % 0.15 to 0.4
0
Residuals, % 0
0 to 0.1