MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. C26200 Brass

EN 1.4982 stainless steel belongs to the iron alloys classification, while C26200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is C26200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
3.0 to 180
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 490
230 to 390
Tensile Strength: Ultimate (UTS), MPa 750
330 to 770
Tensile Strength: Yield (Proof), MPa 570
110 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 860
140
Melting Completion (Liquidus), °C 1430
950
Melting Onset (Solidus), °C 1390
920
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
31

Otherwise Unclassified Properties

Base Metal Price, % relative 22
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 4.9
2.7
Embodied Energy, MJ/kg 71
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
19 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 830
62 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
11 to 26
Strength to Weight: Bending, points 23
13 to 23
Thermal Diffusivity, mm2/s 3.4
38
Thermal Shock Resistance, points 17
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
67 to 70
Iron (Fe), % 61.8 to 69.7
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 5.5 to 7.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.15 to 0.4
0
Zinc (Zn), % 0
29.6 to 33
Residuals, % 0
0 to 0.3