MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. EN AC-43500 Aluminum

EN 1.4983 stainless steel belongs to the iron alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
68 to 91
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 40
4.5 to 13
Fatigue Strength, MPa 200
62 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 630
220 to 300
Tensile Strength: Yield (Proof), MPa 230
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 290
550
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.1
7.8
Embodied Energy, MJ/kg 56
150
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 140
130 to 200
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 22
24 to 33
Strength to Weight: Bending, points 21
32 to 39
Thermal Diffusivity, mm2/s 4.0
60
Thermal Shock Resistance, points 14
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
86.4 to 90.5
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 61.8 to 69.6
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 2.0
0.4 to 0.8
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 12 to 14
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.75
9.0 to 11.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.8
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15