MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. SAE-AISI 1064 Steel

Both EN 1.4983 stainless steel and SAE-AISI 1064 steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is SAE-AISI 1064 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
12 to 13
Fatigue Strength, MPa 200
300
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
72
Shear Strength, MPa 430
430 to 440
Tensile Strength: Ultimate (UTS), MPa 630
720 to 730
Tensile Strength: Yield (Proof), MPa 230
470 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
51
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.4
Embodied Energy, MJ/kg 56
19
Embodied Water, L/kg 150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
79 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 140
600 to 630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
25 to 26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 4.0
14
Thermal Shock Resistance, points 14
25

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0.6 to 0.7
Chromium (Cr), % 16 to 18
0
Iron (Fe), % 61.8 to 69.6
98.4 to 98.9
Manganese (Mn), % 0 to 2.0
0.5 to 0.8
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 12 to 14
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0.4 to 0.8
0