MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. C85800 Brass

EN 1.4983 stainless steel belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 630
380
Tensile Strength: Yield (Proof), MPa 230
210

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 940
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
84
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.1
2.8
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
48
Resilience: Unit (Modulus of Resilience), kJ/m3 140
210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
13
Strength to Weight: Bending, points 21
15
Thermal Diffusivity, mm2/s 4.0
27
Thermal Shock Resistance, points 14
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
57 to 69
Iron (Fe), % 61.8 to 69.6
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.25
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 12 to 14
0 to 0.5
Phosphorus (P), % 0 to 0.035
0 to 0.010
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0.4 to 0.8
0
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3