MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. EN 1.8201 Steel

Both EN 1.5113 steel and EN 1.8201 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 270
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 18
20
Fatigue Strength, MPa 220 to 470
310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
74
Shear Strength, MPa 360 to 540
390
Tensile Strength: Ultimate (UTS), MPa 580 to 900
630
Tensile Strength: Yield (Proof), MPa 320 to 770
450

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 400
450
Melting Completion (Liquidus), °C 1450
1500
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 52
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
7.0
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.5
Embodied Energy, MJ/kg 19
36
Embodied Water, L/kg 48
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 32
22
Strength to Weight: Bending, points 20 to 27
20
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 17 to 26
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.1
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Iron (Fe), % 97 to 97.5
93.6 to 96.2
Manganese (Mn), % 1.6 to 1.8
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.9 to 1.1
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3