MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. CC764S Brass

EN 1.5113 steel belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 270
160
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 18
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 580 to 900
680
Tensile Strength: Yield (Proof), MPa 320 to 770
290

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1450
850
Melting Onset (Solidus), °C 1410
810
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 52
94
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
36

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
49
Embodied Water, L/kg 48
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
80
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
390
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21 to 32
24
Strength to Weight: Bending, points 20 to 27
22
Thermal Diffusivity, mm2/s 14
30
Thermal Shock Resistance, points 17 to 26
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
52 to 66
Iron (Fe), % 97 to 97.5
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 1.6 to 1.8
0.3 to 4.0
Nickel (Ni), % 0
0 to 3.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.9 to 1.1
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
20.7 to 50.2