MakeItFrom.com
Menu (ESC)

EN 1.5502 Steel vs. EN 1.4736 Stainless Steel

Both EN 1.5502 steel and EN 1.4736 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5502 steel and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 20
28
Fatigue Strength, MPa 190 to 290
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 280 to 330
370
Tensile Strength: Ultimate (UTS), MPa 400 to 1380
580
Tensile Strength: Yield (Proof), MPa 270 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 52
21
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.0
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 19
35
Embodied Water, L/kg 47
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 210
140
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 520
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14 to 49
21
Strength to Weight: Bending, points 15 to 35
20
Thermal Diffusivity, mm2/s 14
5.6
Thermal Shock Resistance, points 12 to 40
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0 to 0.040
Chromium (Cr), % 0 to 0.3
17 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98 to 99.249
77 to 81.1
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8