MakeItFrom.com
Menu (ESC)

EN 1.5508 Steel vs. C22000 Bronze

EN 1.5508 steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5508 steel and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 20
1.9 to 45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 300 to 360
200 to 300
Tensile Strength: Ultimate (UTS), MPa 420 to 1460
260 to 520
Tensile Strength: Yield (Proof), MPa 310 to 490
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
190
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
44
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
45

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 47
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 230
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 640
21 to 1110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 15 to 52
8.1 to 17
Strength to Weight: Bending, points 16 to 36
10 to 17
Thermal Diffusivity, mm2/s 14
56
Thermal Shock Resistance, points 12 to 43
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.2 to 0.25
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
89 to 91
Iron (Fe), % 97.9 to 99.199
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2