MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. AWS E80C-B2

Both EN 1.5510 steel and AWS E80C-B2 are iron alloys. They have a very high 98% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is AWS E80C-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
22
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
630
Tensile Strength: Yield (Proof), MPa 310 to 520
530

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
3.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 47
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
130
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 57
22
Strength to Weight: Bending, points 17 to 39
21
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 13 to 47
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0.050 to 0.12
Chromium (Cr), % 0 to 0.3
1.0 to 1.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 97.9 to 99.149
95.3 to 97.9
Manganese (Mn), % 0.6 to 0.9
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.3
0.25 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5