MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. CC380H Copper-nickel

EN 1.5510 steel belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 190
80
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 21
26
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
47
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
310
Tensile Strength: Yield (Proof), MPa 310 to 520
120

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1130
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
46
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.8
Embodied Energy, MJ/kg 19
58
Embodied Water, L/kg 47
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
65
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16 to 57
9.8
Strength to Weight: Bending, points 17 to 39
12
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 13 to 47
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
84.5 to 89
Iron (Fe), % 97.9 to 99.149
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.6 to 0.9
1.0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.5