MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. EN-MC65220 Magnesium

EN 1.5510 steel belongs to the iron alloys classification, while EN-MC65220 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is EN-MC65220 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 190
80
Elastic (Young's, Tensile) Modulus, GPa 190
44
Elongation at Break, % 11 to 21
2.2
Fatigue Strength, MPa 220 to 330
110
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
17
Shear Strength, MPa 310 to 380
150
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
270
Tensile Strength: Yield (Proof), MPa 310 to 520
200

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
980
Thermal Conductivity, W/m-K 51
110
Thermal Expansion, µm/m-K 13
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
80
Density, g/cm3 7.8
1.9
Embodied Carbon, kg CO2/kg material 1.4
27
Embodied Energy, MJ/kg 19
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
5.5
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
62
Strength to Weight: Axial, points 16 to 57
40
Strength to Weight: Bending, points 17 to 39
49
Thermal Diffusivity, mm2/s 14
61
Thermal Shock Resistance, points 13 to 47
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0.050 to 0.1
Iron (Fe), % 97.9 to 99.149
0 to 0.010
Magnesium (Mg), % 0
93.8 to 96.8
Manganese (Mn), % 0.6 to 0.9
0 to 0.15
Nickel (Ni), % 0
0 to 0.0050
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.010
Silver (Ag), % 0
1.3 to 1.7
Sulfur (S), % 0 to 0.025
0
Unspecified Rare Earths, % 0
1.5 to 3.0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010