MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. EN 1.4615 Stainless Steel

Both EN 1.6368 steel and EN 1.4615 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
50
Fatigue Strength, MPa 310 to 330
190
Impact Strength: V-Notched Charpy, J 43 to 46
91
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 410 to 430
360
Tensile Strength: Ultimate (UTS), MPa 660 to 690
500
Tensile Strength: Yield (Proof), MPa 460 to 490
200

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
840
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 22
40
Embodied Water, L/kg 53
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
99
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23 to 24
18
Strength to Weight: Bending, points 21 to 22
18
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 20
11

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0 to 0.030
Chromium (Cr), % 0 to 0.3
14 to 16
Copper (Cu), % 0.5 to 0.8
2.0 to 4.0
Iron (Fe), % 95.1 to 97.2
63.1 to 72.5
Manganese (Mn), % 0.8 to 1.2
7.0 to 9.0
Molybdenum (Mo), % 0.25 to 0.5
0 to 0.8
Nickel (Ni), % 1.0 to 1.3
4.5 to 6.0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0.020 to 0.060
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010