MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. CC499K Bronze

EN 1.6368 steel belongs to the iron alloys classification, while CC499K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
73
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 660 to 690
260
Tensile Strength: Yield (Proof), MPa 460 to 490
120

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
920
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 40
73
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
32
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.7
3.1
Embodied Energy, MJ/kg 22
51
Embodied Water, L/kg 53
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
65
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 24
8.1
Strength to Weight: Bending, points 21 to 22
10
Thermal Diffusivity, mm2/s 11
22
Thermal Shock Resistance, points 20
9.2

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0 to 0.17
0
Chromium (Cr), % 0 to 0.3
0 to 0.020
Copper (Cu), % 0.5 to 0.8
84 to 88
Iron (Fe), % 95.1 to 97.2
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Manganese (Mn), % 0.8 to 1.2
0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0 to 0.6
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0