MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. Nickel 333

EN 1.6368 steel belongs to the iron alloys classification, while nickel 333 belongs to the nickel alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 18
34
Fatigue Strength, MPa 310 to 330
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Shear Strength, MPa 410 to 430
420
Tensile Strength: Ultimate (UTS), MPa 660 to 690
630
Tensile Strength: Yield (Proof), MPa 460 to 490
270

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 410
1010
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 40
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
55
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 1.7
8.5
Embodied Energy, MJ/kg 22
120
Embodied Water, L/kg 53
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 23 to 24
21
Strength to Weight: Bending, points 21 to 22
19
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0 to 0.1
Chromium (Cr), % 0 to 0.3
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95.1 to 97.2
9.3 to 24.5
Manganese (Mn), % 0.8 to 1.2
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.5
2.5 to 4.0
Nickel (Ni), % 1.0 to 1.3
44 to 48
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.25 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0