MakeItFrom.com
Menu (ESC)

EN 1.6553 Steel vs. CC333G Bronze

EN 1.6553 steel belongs to the iron alloys classification, while CC333G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 240
170
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19 to 21
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 710 to 800
710
Tensile Strength: Yield (Proof), MPa 470 to 670
310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 420
230
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 39
38
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.6
3.5
Embodied Energy, MJ/kg 21
56
Embodied Water, L/kg 51
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
75
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1190
410
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25 to 28
24
Strength to Weight: Bending, points 23 to 24
21
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 21 to 23
24

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.4 to 0.8
0 to 0.050
Copper (Cu), % 0 to 0.3
76 to 83
Iron (Fe), % 95.6 to 98.2
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 1.0
0 to 3.0
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0.4 to 0.8
3.7 to 6.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5