MakeItFrom.com
Menu (ESC)

EN 1.6553 Steel vs. C67500 Bronze

EN 1.6553 steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19 to 21
14 to 33
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 710 to 800
430 to 580
Tensile Strength: Yield (Proof), MPa 470 to 670
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 420
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
24
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
27

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 21
47
Embodied Water, L/kg 51
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1190
130 to 650
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25 to 28
15 to 20
Strength to Weight: Bending, points 23 to 24
16 to 19
Thermal Diffusivity, mm2/s 10
34
Thermal Shock Resistance, points 21 to 23
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.4 to 0.8
0
Copper (Cu), % 0 to 0.3
57 to 60
Iron (Fe), % 95.6 to 98.2
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.6 to 1.0
0.050 to 0.5
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0.4 to 0.8
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5

Comparable Variants