MakeItFrom.com
Menu (ESC)

EN 1.6570 Steel vs. Grade Ti-Pd8A Titanium

EN 1.6570 steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6570 steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270 to 340
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
13
Fatigue Strength, MPa 500 to 660
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 910 to 1130
500
Tensile Strength: Yield (Proof), MPa 760 to 1060
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 440
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.7
49
Embodied Energy, MJ/kg 23
840
Embodied Water, L/kg 56
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1520 to 3010
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 32 to 40
31
Strength to Weight: Bending, points 27 to 31
31
Thermal Diffusivity, mm2/s 11
8.6
Thermal Shock Resistance, points 27 to 33
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.28 to 0.35
0 to 0.1
Chromium (Cr), % 1.0 to 1.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94 to 96.2
0 to 0.25
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 1.6 to 2.1
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4