MakeItFrom.com
Menu (ESC)

EN 1.6750 Steel vs. EN 1.7376 Steel

Both EN 1.6750 steel and EN 1.7376 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.6750 steel and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
20
Fatigue Strength, MPa 310
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 650
710
Tensile Strength: Yield (Proof), MPa 460
460

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
600
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.1
Embodied Energy, MJ/kg 22
29
Embodied Water, L/kg 52
88

Common Calculations

PREN (Pitting Resistance) 2.4
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 570
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 10
6.9
Thermal Shock Resistance, points 19
20

Alloy Composition

Carbon (C), % 0.17 to 0.23
0.12 to 0.19
Chromium (Cr), % 0.3 to 0.5
8.0 to 10
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 95.3 to 97.5
86.2 to 90.6
Manganese (Mn), % 0.8 to 1.2
0.35 to 0.65
Molybdenum (Mo), % 0.4 to 0.8
0.9 to 1.2
Nickel (Ni), % 0.8 to 1.2
0 to 0.4
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0 to 0.050