MakeItFrom.com
Menu (ESC)

EN 1.6771 Steel vs. C84000 Brass

EN 1.6771 steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6771 steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 350
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 8.7
27
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 930 to 1180
250
Tensile Strength: Yield (Proof), MPa 740 to 1140
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
72
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
17

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
30
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.9
3.0
Embodied Energy, MJ/kg 25
49
Embodied Water, L/kg 58
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 93
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1460 to 3450
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33 to 41
8.2
Strength to Weight: Bending, points 27 to 31
10
Thermal Diffusivity, mm2/s 13
22
Thermal Shock Resistance, points 27 to 35
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.27 to 0.33
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 92.2 to 95
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.6 to 1.0
0 to 0.010
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 3.0 to 4.0
0.5 to 2.0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.020
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7