MakeItFrom.com
Menu (ESC)

EN 1.6982 Stainless Steel vs. S40920 Stainless Steel

Both EN 1.6982 stainless steel and S40920 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6982 stainless steel and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
22
Fatigue Strength, MPa 350
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 800
430
Tensile Strength: Yield (Proof), MPa 570
190

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 770
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.0
Embodied Energy, MJ/kg 33
28
Embodied Water, L/kg 110
94

Common Calculations

PREN (Pitting Resistance) 14
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
78
Resilience: Unit (Modulus of Resilience), kJ/m3 820
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
15
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 6.6
6.9
Thermal Shock Resistance, points 29
15

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 12 to 13.5
10.5 to 11.7
Iron (Fe), % 78.7 to 84.5
85.1 to 89.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.5