MakeItFrom.com
Menu (ESC)

EN 1.7220 Steel vs. C70400 Copper-nickel

EN 1.7220 steel belongs to the iron alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7220 steel and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 520 to 1720
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
210
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 44
64
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
14
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
14

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
32
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
3.0
Embodied Energy, MJ/kg 20
47
Embodied Water, L/kg 51
300

Common Calculations

Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 61
9.3 to 9.8
Strength to Weight: Bending, points 18 to 41
11 to 12
Thermal Diffusivity, mm2/s 12
18
Thermal Shock Resistance, points 15 to 50
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.37
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0
89.8 to 93.6
Iron (Fe), % 96.8 to 98.1
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0.3 to 0.8
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0
4.8 to 6.2
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5