MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. C61500 Bronze

EN 1.7362 steel belongs to the iron alloys classification, while C61500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21 to 22
3.0 to 55
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
42
Shear Strength, MPa 320 to 370
350 to 550
Tensile Strength: Ultimate (UTS), MPa 510 to 600
480 to 970
Tensile Strength: Yield (Proof), MPa 200 to 360
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 510
220
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 40
58
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
13
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
29
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.8
3.2
Embodied Energy, MJ/kg 23
52
Embodied Water, L/kg 69
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
100 to 2310
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 21
16 to 32
Strength to Weight: Bending, points 18 to 20
16 to 26
Thermal Diffusivity, mm2/s 11
16
Thermal Shock Resistance, points 14 to 17
17 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
7.7 to 8.3
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
89 to 90.5
Iron (Fe), % 91.5 to 95.2
0
Lead (Pb), % 0
0 to 0.015
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
1.8 to 2.2
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Residuals, % 0
0 to 0.5