MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. C90500 Gun Metal

EN 1.7362 steel belongs to the iron alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21 to 22
20
Fatigue Strength, MPa 140 to 250
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 510 to 600
320
Tensile Strength: Yield (Proof), MPa 200 to 360
160

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 510
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 40
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.8
3.6
Embodied Energy, MJ/kg 23
59
Embodied Water, L/kg 69
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
54
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
110
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18 to 21
10
Strength to Weight: Bending, points 18 to 20
12
Thermal Diffusivity, mm2/s 11
23
Thermal Shock Resistance, points 14 to 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
86 to 89
Iron (Fe), % 91.5 to 95.2
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
0 to 1.0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.0050
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3