MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. Grade Ti-Pd8A Titanium

EN 1.7366 steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 210
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
13
Fatigue Strength, MPa 160 to 320
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 460 to 710
500
Tensile Strength: Yield (Proof), MPa 230 to 480
430

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 510
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.7
49
Embodied Energy, MJ/kg 23
840
Embodied Water, L/kg 69
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 16 to 25
31
Strength to Weight: Bending, points 17 to 23
31
Thermal Diffusivity, mm2/s 11
8.6
Thermal Shock Resistance, points 13 to 20
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.18
0 to 0.1
Chromium (Cr), % 4.0 to 6.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 91.9 to 95.3
0 to 0.25
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4