MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. Titanium 6-6-2

EN 1.7366 steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 19
6.7 to 9.0
Fatigue Strength, MPa 160 to 320
590 to 670
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
44
Shear Strength, MPa 290 to 440
670 to 800
Tensile Strength: Ultimate (UTS), MPa 460 to 710
1140 to 1370
Tensile Strength: Yield (Proof), MPa 230 to 480
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 510
310
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 40
5.5
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 1.7
29
Embodied Energy, MJ/kg 23
470
Embodied Water, L/kg 69
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 16 to 25
66 to 79
Strength to Weight: Bending, points 17 to 23
50 to 57
Thermal Diffusivity, mm2/s 11
2.1
Thermal Shock Resistance, points 13 to 20
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.18
0 to 0.050
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 91.9 to 95.3
0.35 to 1.0
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4

Comparable Variants