MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. C41500 Brass

EN 1.7366 steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
2.0 to 42
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 290 to 440
220 to 360
Tensile Strength: Ultimate (UTS), MPa 460 to 710
340 to 560
Tensile Strength: Yield (Proof), MPa 230 to 480
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 510
180
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
28
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 69
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16 to 25
11 to 18
Strength to Weight: Bending, points 17 to 23
12 to 17
Thermal Diffusivity, mm2/s 11
37
Thermal Shock Resistance, points 13 to 20
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 91.9 to 95.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5