MakeItFrom.com
Menu (ESC)

EN 1.7378 Steel vs. EN 1.0225 Steel

Both EN 1.7378 steel and EN 1.0225 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7378 steel and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
6.7 to 24
Fatigue Strength, MPa 330
170 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 430
280 to 290
Tensile Strength: Ultimate (UTS), MPa 700
440 to 500
Tensile Strength: Yield (Proof), MPa 490
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 61
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 630
140 to 390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
16 to 18
Strength to Weight: Bending, points 22
16 to 18
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 20
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0 to 0.21
Chromium (Cr), % 2.2 to 2.6
0
Iron (Fe), % 94.6 to 96.1
98 to 100
Manganese (Mn), % 0.3 to 0.7
0 to 1.4
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0.15 to 0.45
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0.050 to 0.1
0
Vanadium (V), % 0.2 to 0.3
0