MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. CC334G Bronze

EN 1.7380 steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
210
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19 to 20
5.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
45
Tensile Strength: Ultimate (UTS), MPa 540 to 550
810
Tensile Strength: Yield (Proof), MPa 290 to 330
410

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 460
240
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 39
41
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.8
3.6
Embodied Energy, MJ/kg 23
59
Embodied Water, L/kg 59
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
38
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
710
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19 to 20
28
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 15 to 16
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
72 to 84.5
Iron (Fe), % 94.6 to 96.6
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.8
0 to 2.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
4.0 to 7.5
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5