MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. CC755S Brass

EN 1.7380 steel belongs to the iron alloys classification, while CC755S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
110
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19 to 20
9.5
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 540 to 550
390
Tensile Strength: Yield (Proof), MPa 290 to 330
250

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 460
120
Melting Completion (Liquidus), °C 1470
820
Melting Onset (Solidus), °C 1430
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
30

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
23
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
46
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
33
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
290
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19 to 20
14
Strength to Weight: Bending, points 19
15
Thermal Diffusivity, mm2/s 11
38
Thermal Shock Resistance, points 15 to 16
13

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.7
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
59.5 to 61
Iron (Fe), % 94.6 to 96.6
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Manganese (Mn), % 0.4 to 0.8
0 to 0.050
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.8 to 38.9