MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. Grade 9 Titanium

EN 1.7380 steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
11 to 17
Fatigue Strength, MPa 200 to 230
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Shear Strength, MPa 330 to 350
430 to 580
Tensile Strength: Ultimate (UTS), MPa 540 to 550
700 to 960
Tensile Strength: Yield (Proof), MPa 290 to 330
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 460
330
Melting Completion (Liquidus), °C 1470
1640
Melting Onset (Solidus), °C 1430
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 39
8.1
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.8
36
Embodied Energy, MJ/kg 23
580
Embodied Water, L/kg 59
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19 to 20
43 to 60
Strength to Weight: Bending, points 19
39 to 48
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 15 to 16
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.080 to 0.14
0 to 0.080
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.6 to 96.6
0 to 0.25
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4