MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C63000 Bronze

EN 1.7380 steel belongs to the iron alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19 to 20
7.9 to 15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 330 to 350
400 to 470
Tensile Strength: Ultimate (UTS), MPa 540 to 550
660 to 790
Tensile Strength: Yield (Proof), MPa 290 to 330
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Maximum Temperature: Mechanical, °C 460
230
Melting Completion (Liquidus), °C 1470
1050
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.8
3.5
Embodied Energy, MJ/kg 23
57
Embodied Water, L/kg 59
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
470 to 640
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19 to 20
22 to 26
Strength to Weight: Bending, points 19
20 to 23
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 15 to 16
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
76.8 to 85
Iron (Fe), % 94.6 to 96.6
2.0 to 4.0
Manganese (Mn), % 0.4 to 0.8
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
4.0 to 5.5
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5