MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C67500 Bronze

EN 1.7380 steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19 to 20
14 to 33
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 74
40
Shear Strength, MPa 330 to 350
270 to 350
Tensile Strength: Ultimate (UTS), MPa 540 to 550
430 to 580
Tensile Strength: Yield (Proof), MPa 290 to 330
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 460
120
Melting Completion (Liquidus), °C 1470
890
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
24
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
27

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
47
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
130 to 650
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19 to 20
15 to 20
Strength to Weight: Bending, points 19
16 to 19
Thermal Diffusivity, mm2/s 11
34
Thermal Shock Resistance, points 15 to 16
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
57 to 60
Iron (Fe), % 94.6 to 96.6
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.4 to 0.8
0.050 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5